The Company

Renovo Concepts, Inc. was established in 2017 to develop and commercialize a new therapeutic modality developed and researched at the Wake Forest School of Medicine (formerly the Bowman Gray School of Medicine) at Wake Forest University. This new modality, Mechanical Tissue Resuscitation™, or MTR™, has shown promising results in scientific studies. MTR™ is intended for use in treating traumatic, ischemic and hemorrhagic injuries to the brain, heart and spinal cord. This new therapeutic modality was developed and researched by Louis Argenta MD and Michael Morykwas PhD, the renowned inventors of Negative Pressure Wound Therapy - a market segment currently generating over $2B in annual revenue.


Initial Product Offering

The initial product in development is the Gen 1 MTR™ Brain application. The Mechanical Tissue Resuscitation™ System (consisting of the MTR™ disposable device and the Sub-atmospheric Pressure Pump™, or SaPP™) is indicated for use in Traumatic Brain Injury (TBI) patients who may benefit from having controlled application of sub-atmospheric pressure in the treatment of their traumatic injury. The product and associated therapy have shown promise, not only in advancing the care of brain trauma patients, but also in accelerating their recovery. MTR™ therapy is an entirely new approach to treating traumatic injuries, and possesses the potential to radically change the course and duration of such treatment.

Traumatic Brain Injury: A Need for Better Treatment Options


Traumatic Brain Injuries (TBI) are a devastating problem whose treatment remains an enigma. 

Over 1.7 million people sustain head or spinal cord injuries every year in the United States. Approximately 52,000 of these patients will die, and an equal number will sustain permanent functional disability.

Following TBI, impaired microcirculation in and around the injury results in the depletion of critical substrates such as oxygen, glucose, and adenosine triphosphate. Metabolites from the compromised cells around the initial injury accumulate in the interstitial and perivascular spaces. Accumulation of water in the injury penumbra results in further capillary compression, decreased perfusion, and progressive secondary injury defined as secondary neuronal degeneration.

Current treatment modalities include both surgical (removal of various amounts of skull to allow the brain to swell outside of its normal boundaries, insertion of drains to removed excess pooled fluids) and pharmacologic (mannitol, steroids, etc., to create an osmotic gradient inside the vasculature to remove excess fluid from the brain interstitium) approaches.

Initial work in rodents demonstrated that the application of localized sub-atmospheric pressure to the area of injury produces mechanical tissue resuscitation of compromised cells.  

Mechanical Tissue Resuscitation™, or MTR™ – the controlled application of vacuum to the injured area - significantly modulated the concentration of metabolites and lactate in the area of injury, decreased water content and edema, decreased the volume of the resultant brain injury cavity, quantitatively improved ultimate neuronal survival, and improved the recovery of the animals treated. 

In an additional study, we investigated the application of mechanical tissue resuscitation to prevent or attenuate the neurological sequelae of TBI, as measured by recovery of functional deficits (BBB score, walking on a rotary wheel and balance beam, etc.)

In peripheral body wounds, the application of sub-atmospheric pressure has been demonstrated to increase blood flow approximately 4-fold by laser Doppler measurement.

Changes in microvascular blood flow depend on the amount of sub-atmospheric pressure applied, the distance from the wound edge, and the type of tissue being treated.

In the swine model, we preliminarily examined blood flow as well as physical deformation of the brain parenchyma, electroencephalogram (EEG) changes, and behavioral changes when sub-atmospheric pressure was applied directly to the uninjured brain. 

Utilizing MTR™ Brain with -100 mmHg for 72 hours reduced total necrotic brain tissue volume by 53% compared to control in a published animal study. 


Neurosurgery, Volume 70, Issue 5, May 2012, Pages 1281-1295

Neurosurgery, Volume 75, Issue 2, August 2014, Pages 152-162

Neurosurgery, Volume 75, Issue 2, August 2014, Pages 152-162

A New Method for Modulating Traumatic Brain Injury with Mechanical Tissue Resuscitation™

Neurosurgery, Volume 75, Issue 2, August 2014, Pages 152-162

Neurosurgery, Volume 75, Issue 2, August 2014, Pages 152-162

Neurosurgery, Volume 75, Issue 2, August 2014, Pages 152-162

Mechanical Tissue Resuscitation™ at the Site of Traumatic Brain Injuries Reduces the Volume of Injury and Hemorrhage in a Swine Model

Contact Us

Please send us a message or call us for an appointment.

Renovo Concepts, Inc.

3201 Cherry Ridge, Suite B-228, San Antonio, Texas 78230, United States

(210) 899-3228


Open today

08:00 am – 05:00 pm

Monday - Friday

8:00 am - 5:00 pm

Send Message